ADVANCING DIGITAL LIVING

The performance materials business of Merck KGaA, Darmstadt, Germany operates as EMD Performance Materials in the U.S. and Canada.

inherently Ferroelectric ALD Films

Using ZrD-04 and HfD-04

Vijay K. Narasimhan

Jean-Sebastien Lehn, Karl Littau, Jacob Woodruff, and Ravi Kanjolia

INTERMOLECULAR®

Agenda

Background and motivation

01

HfO₂ and ZrO₂ growth and crystallization

03

Ferroelectric testing

04

12

21

Background and Motivation

Ferroelectric principles

Ferroelectric materials are non-linear capacitors.

Ferroelectrics have an apparent "stored charge" called the "remanent polarization," P_r

Potential uses of ferroelectric materials for computing

Tunnel Junction

Barrier height is modulated by a change in polarization, inducing a current switch

Fujii et. al., Toshiba, 2016 Symposium on VLSI Technology Digest of Technical Papers

Berdan *et al.*, Kioxia, *Nature Electronics* (2020). DOI: 10.1038/s41928-020-0405-0

Negative Capacitance Transistor

Ferroelectric layer in a transistor gate enables negative capacitance resulting in higher subthreshold slope for low power logic operation

HfO₂-based ferroelectrics

- Discovered in 2011 [Boscke, Muller, et al, APL 99 (2011)]
- Can be deposited by atomic layer deposition
 - e.g. Hf precursor like TDMA-Hf or HfD-04, oxidant like water or ozone
- Offer better CMOS integration than the more traditional FE (e.g. PZT)

Muller et al, Nano Lett. 2012

Polarization hysteresis in one of the stacks studied at Intermolecular

Having the right atomic structure of HfO₂ is crucial

The crystallographic phase of HfO₂ has a direct effect on the electrical characteristics of the film

A monoclinic phase

 $(P2_1/c)$ is the *most* stable phase at room temperature and standard pressure, but is not ferroelectric.

A tetragonal phase

(P4₂/nmc) has a very high theoretical dielectric constant (κ =75) and a large bandgap (E_g = 6 eV). It can also produce anti-ferroelectric-like behavior.

An **orthorhombic phase** (Pca2₁), a metastable structure, is not centrosymmetric, and can therefore demonstrate *ferroelectric behavior*

A wide parameter space influences the ferroelectricity of HfO₂

Typically, top electrode and annealing strongly influence phase

Example: 7nm oxide materials deposited by ALD with amide-type precursors at 285°C

High temperature metallocene precursors

HfD-04: bis(methylcyclopentadienyl)methoxymethylhafnium

Zr_0-

ZrD-04 : bis(methylcyclopentadienyl)methoxymethylzirconium

For these precursors, the growth temperature can be near or above the crystallization temperature of the oxide film that is produced.

The goal of this study was to **examine the crystallization and ferroelectric properties** of films deposited from these high-temperature precursors.

zrd-04 and Hfd-04 Films

Process Flow

Fixed conditions

Reactor: Cambridge Nanotech Savannah (200 mm cross-flow) Precursors: ZrD-04, HfD-04 Bubbler temperature: 125°**C** Precursor dose: 3s Reactant dose: 2s Purges: 10s

HfD-04 Growth Curves

Water @ 340°C

Ozone @ 300°C

GIXRD for Water-based HfO₂ film **Crystallinity**

- HfO₂ films at all thicknesses are mixed phase with a dominant monoclinic fraction.
- Thick films are crystalline as deposited, whereas the thinnest film only shows broad crystalline features after 450°C annealing.

GIXRD for Ozone-based HfO₂ film **Crystallinity**

- Films are amorphous as deposited, and thinnest film remains amorphous even after annealing.
- Thicker film is mixed phase with a dominant monoclinic fraction, but orthorhombic (tetragonal) fraction is larger than the film deposited at 340°C with water

ZrD-04 Growth Curves

Water

Ozone

300

GIXRD for Water-based ZrO₂ Films Crystallinity, as deposited

 Overall, films below ~ 60Å show no significant monoclinic fraction, whereas thicker films are mixed-phase (tetragonal-monoclinic). The thicker films at 340°C have a larger monoclinic fraction than films of similar thickness grown at 300°C.

GIXRD for Ozone-based ZrO₂ Films Crystallinity, as deposited

19

- All films deposited with ozone at 300°C show suppression of the monoclinic phase
- Thicker films deposited with ozone at 340°C show a strong monoclinic signal

GIXRD for Ozone-based ZrO₂ Films Crystallinity, before and after annealing (RTA 500°C, 5 min, N₂)

• Films deposited with ozone at 300°C maintain their tetragonal character after annealing

Ferroelectric testing

Experimental Conditions

Conditions TiN deposition temp: 250°℃ Precursors: ZrD-04 and HfD-04 Reactant: Ozone Bubbler temperature: 125°℃ Precursor dose: 3s Reactant dose: 2s Purges: 10s ALD Deposition temp: 300°℃

PV Hysteresis-Stress Measurement

PV Hysteresis Waveform

- Bipolar / Triangular Waveform
- Period = 8 ms (double sweep)
- Frequency = 250 Hz
- Voltage: ±1V→3V, 0.25 V step
- Stress / Wake-Up Waveform
- Bipolar / Square Wave
- Period = 1 ms
- Frequency = 1 kHz
- Duration: 1 sec / 1k cycles
- Voltage: ±3 V

Measurement Sequence

- 1) PV Hysteresis ($\pm 1V \rightarrow 3V$) [pre-stress]
- 2) Stress / Wake-Up (± 3V)
- 3) PV Hysteresis (± $1V \rightarrow 3V$) [post-stress]

Hysteresis [pre-stress] Bipolar / Triangle (250 Hz)

Stress / Wake-Up Bipolar / Square (1 kHz)

The monoclinic phase was effectively suppressed in the blended film, and the film is strongly ferroelectric as deposited.

3.0 4.0

summary

- HfD-04 and ZrD-04 show linear ALD growth with both water and ozone.
- There is strong monoclinic suppression in ZrO₂ films deposited with ozone at 300°C (extending results from A. Lamperti, L. Lamagna, G. Congedo, and S. Spiga, J. Electrochem. Soc., 158, G221, 2011).
- HfO₂ films are amorphous as deposited at 300°C.
- Alternating cycles of ZrO₂ and HfO₂ using these precursors produce a crystalline film with strong ferroelectricity.

vijay k. Narasimhan, ph.p.

EMD Performance Materials

vijay.narasimhan@emdgroup.com

