Products are warranted to meet the specifications set forth on their label/packaging and/or certificate of analysis at the time of shipment or for the expressly stated duration. Merck provides information and advice on application technologies and relevant regulations based upon its current knowledge and opinion. Merck makes no representation or warranty of any kind, express or implied, including merchantability or fitness for a particular use regarding our products, their application or any information provided in connection therewith. Merck shall not in any event be liable for incidental, consequential, indirect, exemplary or special damages of any kind resulting from any use of failure of the products. Customer is responsible for and must independently determine the suitability of Merck’s products for its products, intended use and processes. The foregoing information and suggestions are also provided without warranty of non-infringement as to intellectual property rights of third parties and shall not be construed as any inducement to infringe the rights of third parties. Customer shall be responsible for obtaining any applicable third party intellectual property licenses. All sales are subject to Merck’s complete Terms and Conditions of Sale. Prices are subject to change without notice. Merck reserves the right to discontinue products without prior notice. Merck, the vibrant M; lisicon® are trademarks of Merck KGaA, Darmstadt, Germany. All other trademarks pertain to their proprietors.
Organic photovoltaics (OPV) constitute an important and highly promising technology in the world-wide adoption and implementation of photovoltaics (PV).

In particular, printable OPV materials can be processed using high speed continuous production (roll to roll) without the need for vacuum processes, greatly enhancing throughput without the need for high capital investments. These factors all combine to provide OPV the potential for very low energy payback time.

There are many important advantages of OPV technology. Superior performance, compared to inorganic photovoltaics, in low or diffuse lighting conditions when the sun is low in the sky. In addition, flexibility, semi-transparency and tunable colors are attractive features, and through the use of flexible substrates, it is possible to envisage a vast range of products and applications, which meet future market need.

For example, the combination of the advantages already listed, together with higher performance and improved stability will enable a revolution in the building integrated photovoltaic (BIPV) application market. Other attractive markets include off-grid power applications and consumer electronics. To achieve these aims Merck’s R&D team is developing a series of materials targeting these unique benefits. Our lisicon® PV-D and PV-A series can achieve performance in excess of 8% power conversion efficiency while offering superior processability and solubility. Of critical interest to the OPV field is that Merck materials can be coated from non-halogenated solvents without any detriment to performance. This drastically reduces the environmental impact of processing such materials to a minimum, enabling the concept of a “green” technology.

The lisicon® PV-D and PV-A series delivers very reproducible results. Coating over a range of thickness is possible without a decrease in performance, and it is equally well performing both in standard and the so called “inverted” cell architectures necessary for up-scaled industrial printing processes.

An additional benefit of the material is its attractive color, making it appealing for applications where the visual impression of the finished device is important. lisicon® PV-D is stable during ambient (air) processing and is ideally suited for processing at the typical temperatures required for a production line. Stability of the final device is also improved using lisicon® PV-E materials, an ETL material designed specifically for Merck’s PV-A and PV-D materials.

Following the acquisition of AZ Electronic Materials Merck now offers liquid barrier materials, suitable for coating barrier films for a variety of applications – of which one target is OPV.

For further information on Merck’s photovoltaic product portfolio please contact our key account.