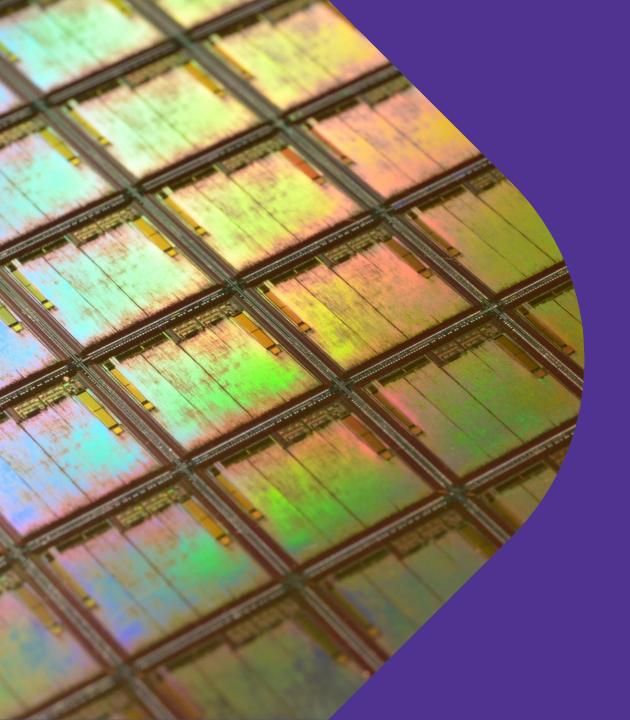
Aqueous Materials for Advanced Lithography

Strategic Materials Conference Taiwan 2019

Yi Cao Taipei, 9/19/2019



PERFORMANCE Materials

Agenda

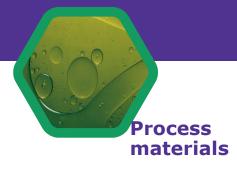
- Overview and product roadmap
- ©2 Rinse materials
- ©3 Chemical shrink materials
- Summary

D1 overview and product roadmap

EMD Performance Materials – Semiconductor Solutions

Our solutions enable electronic industry

Patterning materials



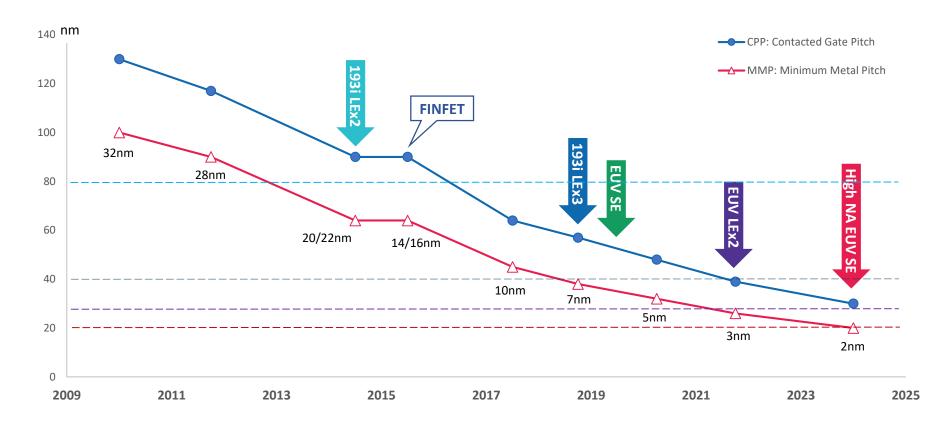
Dielectric materials

we enable

- smaller structures to continue Moore's law
- higher memory capacity, faster processing speed and less power consumption
- improved yields and lower processing costs

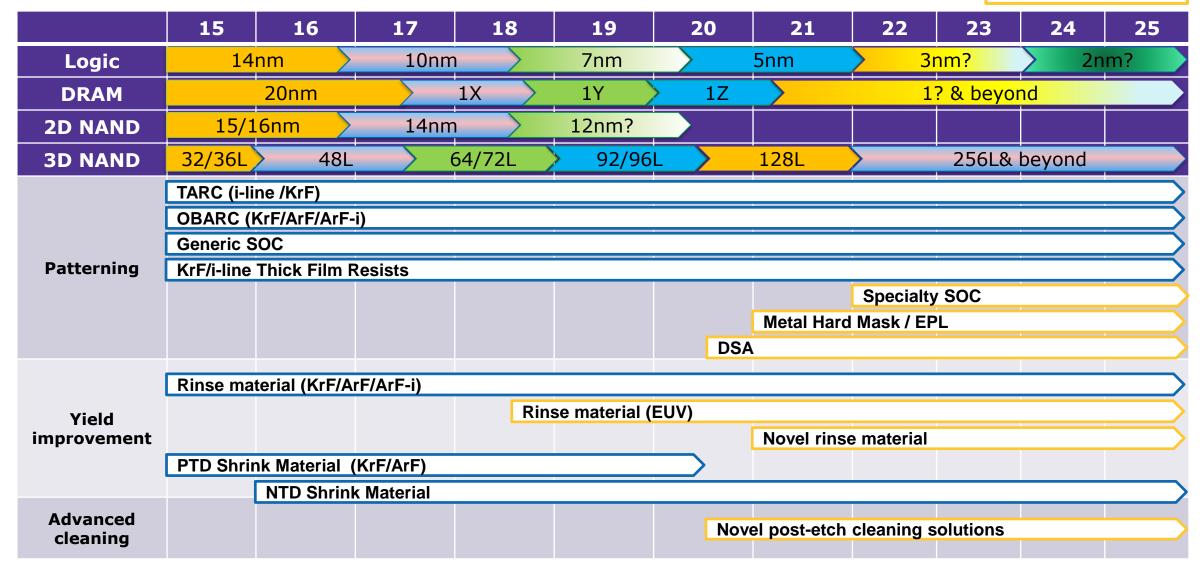
Mobile Devices

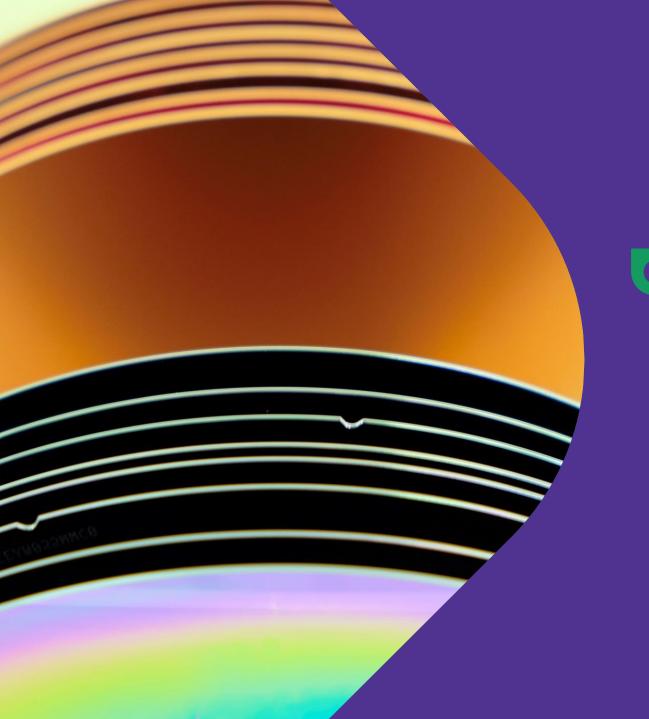
Servers for Big Data



Wearables and other IoT devices

Lithography roadMap

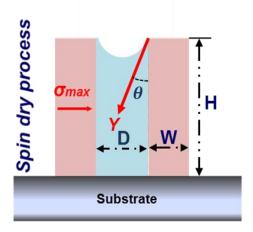

- EUV process makes economic sense in replacing 3 masks.
- Double SAQP for pillar patterning around 14nm DRAM may render EUV process of cost advantages.

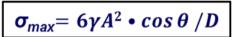

Commercial product

Lithography & cleaning materials roadmap

Development stage

D2 Rinse Materials

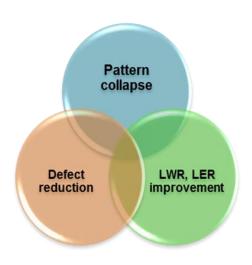

Concept

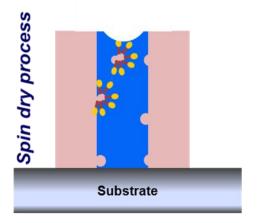

Pattern collapse:

- Capillary effect (rinse surface tension)
- Resist deformation (Young's modulus)

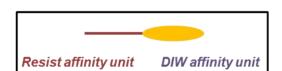
Defect reduction & LWR, LER improvement:

- Resist & DIW affinity part of FIRM chemical
- · Clean resist scum & leveling pattern surface

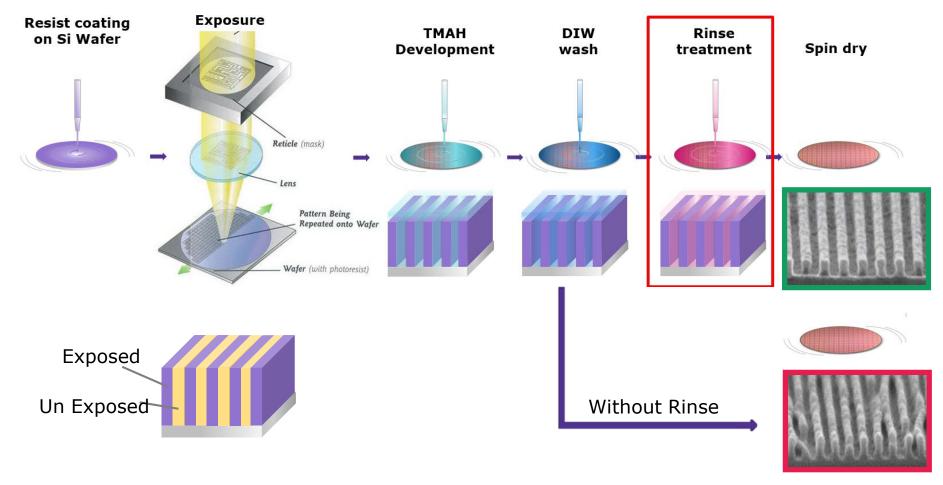

 σ : Stress to resist

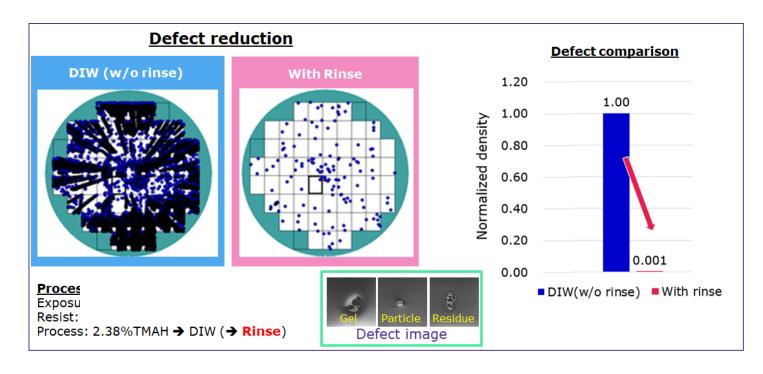

γ : Surface tension of rinse

A : Aspect ratio = H/W


O : Contact angle

D : Space width



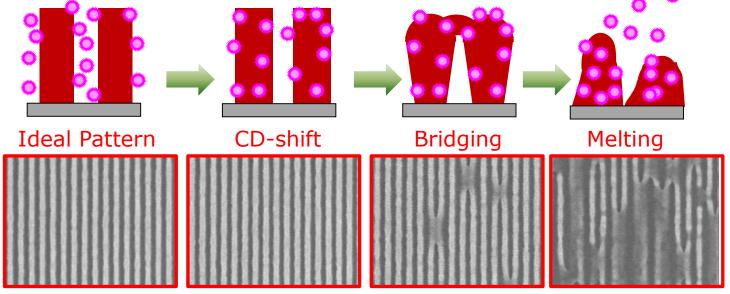

The process and benefits

Fully integrated in resist development

The process and benefits

Key Benefits

- ✓ Straightforward process
- ✓ Pattern collapse mitigation
- ✓ Defect reduction



Material design

Low

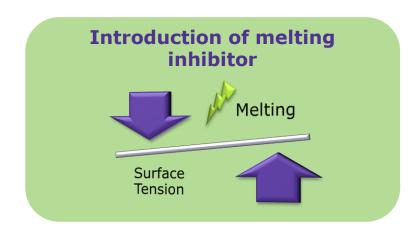
*Affinity between resist and surfactant (Penetration of surfactant into resist pattern)

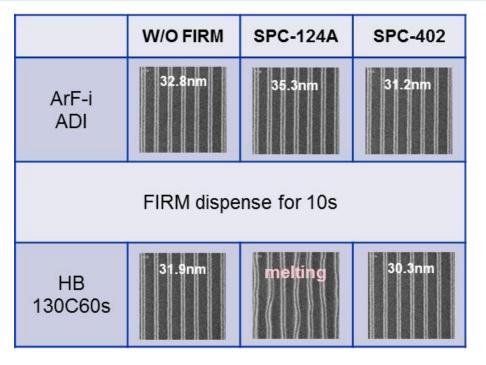
High

*The affinity is defined with solubility parameter.

Considerations

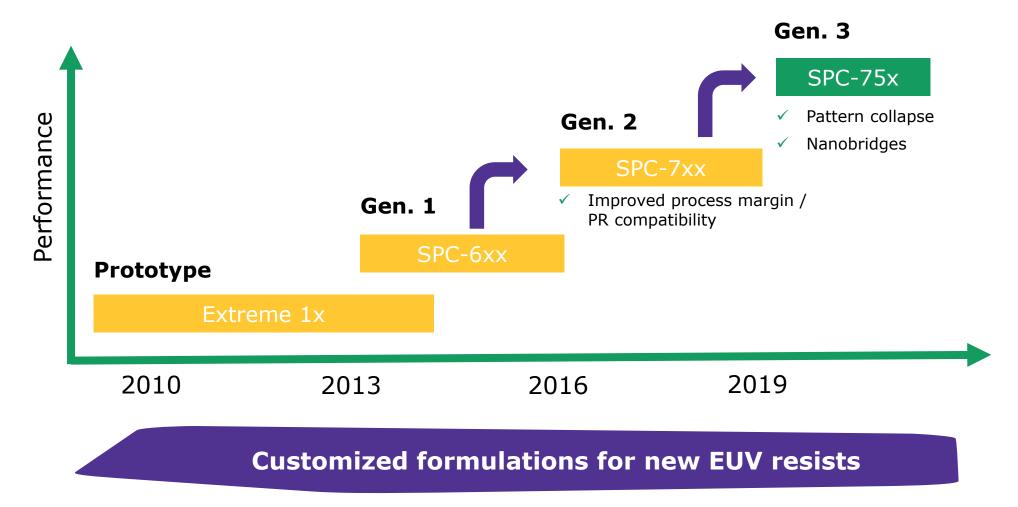
- Resist chemistry
- Loading of surfactant
- Bulkiness of surfactant
- Melting control
- Functionality


Surfactant penetration is one of the key factors for resist compatibility


Rinse materials – ArF

Commercial products

Product Name	SPC-116A	SPC-124A	SPC-402
*Surface tension (mN/m)	33.3	37.5	33.4
Chemical	Nonionic	Nonionic	Nonionic + Additive
Application	ArF-d	KrF & ArF-d (ArF-i)	ArF-i

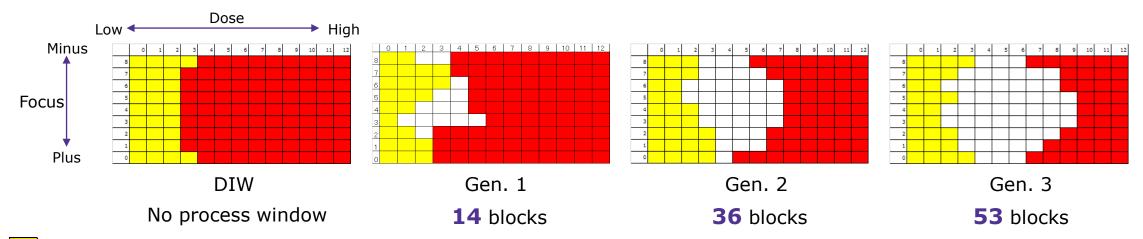


- Broadly adopted in the industry.
- Proven resist compatibility.

EUV Rinse – development roadmap

Lithographic performance on EUV Resist B

Process conditions


Exposure tool: NXE3300 (0.33NA, Dipole)

EUV Resist B/ 45nm thick (16nm L/S)

<u>Dose</u>: 41 mJ/cm² center / 1.5mJ/cm² step

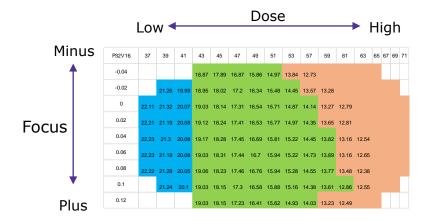
Focus: 0.02um center / 0.02um step

	DIW	Gen. 2	Gen. 3
Minimum CD (nm) (Pattern collapse margin)	N/A	15.5	14.5

Bridge
Collapse or Pinching
Pattern standing

Expanded process margin with new rinse platforms.

Lithographic performance on EUV Resist C


Process conditions

Exposure tool: NXE3300 (0.33NA, Dipole)

EUV Resist C / 35nm thick (16/nm hp)

<u>Dose</u>: 53 mJ/cm² center / 2.0mJ/cm² step

Focus: 0.04um center / 0.02um step

P32V16	37	39	41	43	45	47	49	51	53	55	57	59	61	63	65	67	69
-0.04				19.13	18.15	17.2	16.33	15.38	14.35	12.86							
-0.02		21.55	20.29	19.33	18.32	17.5	16.69	15.87	14.83	14.1	13.15						
0	22.32	21.5	20.34	19.32	18.55	17.65	16.89	16.08	15.3	14.57	13.79	13.19					
0.02	22.34	21.43	20.35	19.44	18.54	17.81	16.94	16.15	15.43	14.7	14.06	13.32	12.53				
0.04	22.37	21.53	20.37	19.42	18.66	17.76	16.97	16.16	15.53	14.84	14.08	13.53	12.78				
0.06	22.36	21.48	20.29	19.37	18.6	17.74	17.12	16.21	15.5	15	14.2	13.47	12.76	13			
0.08	22.37	21.4	20.35	19.36	18.58	17.76	17.11	16.23	15.73	14.95	14.09	13.37	12.6	12			
0.1		21.44	20.32	19.29	18.46	17.57	16.91	16.13	15.39	14.66	13.87	13.15	12.32	12			L
0.12				19.26	18.3	17.51	16.67	15.92	15.14	14.31	13.41	12.55					

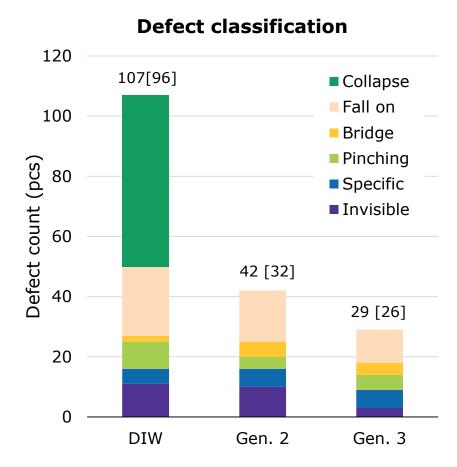
Gen. 2

65 blocks

Gen. 3

71 blocks

Gen. 3 & process optimization


73 blocks

Bridge Collapse or Pinching Pattern standing

Process window is improved by both new design and process optimization.

Rinse materials **EUV rinse – defectivity**

*[]: Defect count excluding invisible

Process conditions

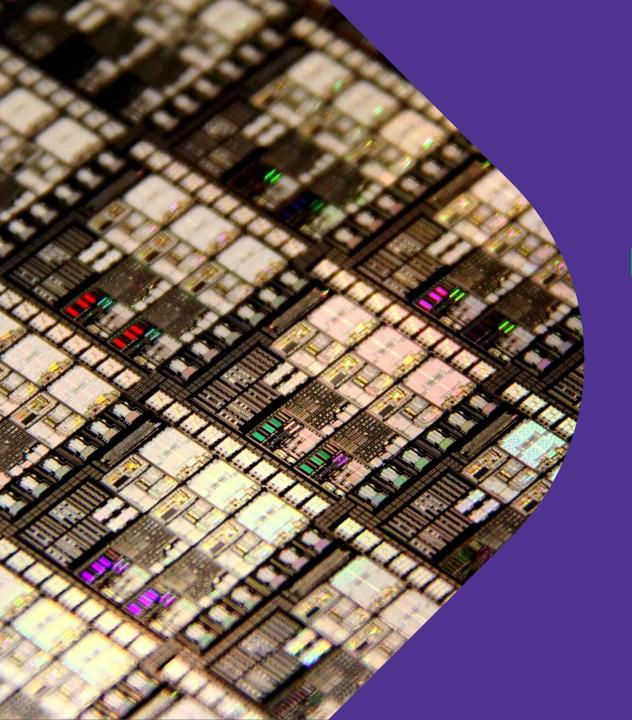
Exposure tool: NXE3300 (0.33NA, Dipole)

EUV resist / 35nm thick (18nm L/S)

<u>Dose / Focus</u>: 40.5 mJ/cm² / -0.05um <u>Inspection area</u> (Exposed area): 161.2cm²

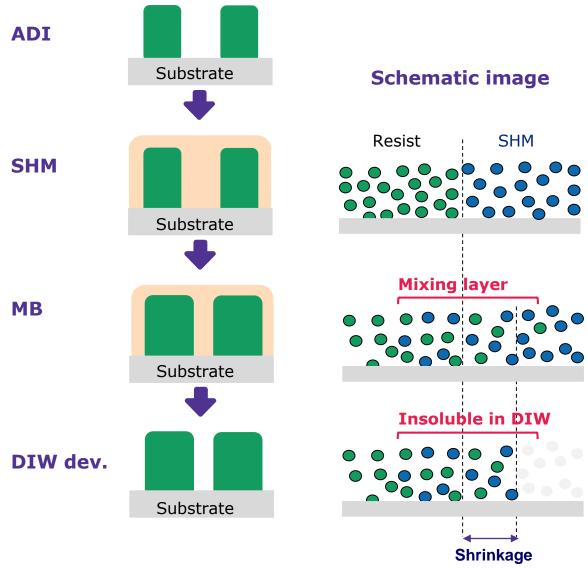
	DIW	Gen. 2	Gen. 3
Defect map			
Defect Density (pcs/cm2)	0.66	0.26	0.18

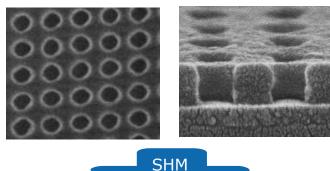
	Collapse	Fall on	Bridge	Pinching	Specific
Defect type		<u> </u>			

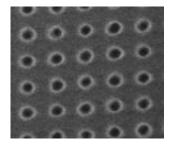

- Pattern collapse dominates in regular process.
- Rinse process is effective in eliminating defects.
- Pinching defects are reduced with rinse process.

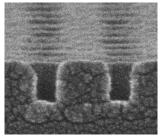
summary

- Rinse materials offer benefits of pattern collapse mitigation and defect improvement, therefore, superior process margins for yield improvement.
- EMD Performance Materials provides rinse materials for both ArF and EUV lithography processes.
- Rinse process has been implemented in volume production of the first generation of EUV lithography.
- 16nm half pitch is resolved with rinse process with sufficient pattern collapse margin.
- Defectivity is significantly improved with EUV rinse.
- Collaborating with TEL, EMD Performance Materials offers not only innovative materials but also expertise in process optimization.




D3 chemical shrink materials

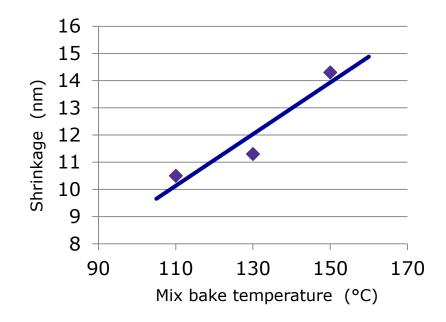

The process & mechanism



ADI (After Development Image)

ASI (After Shrink Image)

- Constant shrinkage through pitch
- Whole track compatible process
- In-process tunable shrinkage
- Reduced Cost of Ownership


Shrinkage controllability

Shrink Process

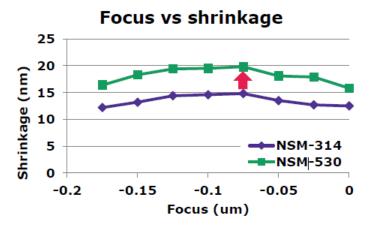
Film thickness: 100nm

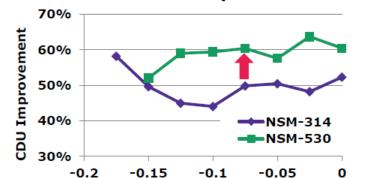
Mixing Bake: 110, 130, 150°C/ 60sec

<u>Development</u>: DI-Water

	ADI
Top Image	
CD (nm)	65.5

	110C/60s	130C/60s	150C/60s	
Top Image		000		
CD (nm)	<u>55.0</u>	<u>54.2</u>	51.2	
Shrinkage (nm)	10.5	11.3	14.3	


Shrink amount is tunable with mixing bake temperature.



Local CD uniformity

Grid hole: 110nm pitch

Focus	-0.175 um	−0.150 um	−0.125 um	-0.100 um	-0.075 um	-0.050 um	-0.025 um	0.000 um
Control (ADI))0000)0000)0000		00000 0000 0000 0000		00000 00000 00000 00000		00000 0000 0000 0000 0000	
StDev	2.51	2.46	2.56	2.34	2.65	2.38	2.45	2.2
CD	46.24	48.61	50.35	50.55	50.69	48.56	47.98	46.01
NSM-314 Shrink-D								
StDev	1.05	1.24	1.41	1.31	1.33	1.18	1.27	1.05
CD	34.02	35.46	35.97	35.94	35.91	35.08	35.27	33.56
Shrinkage	12.2 nm	13.2 nm	14.4 nm	14.6 nm	14.8 nm	13.5 nm	12.7 nm	12.5 nm
NSM-530 Shrink-D	00000							
StDev	1.32	1.18	1.05	0.95	1.05	1.01	0.89	0.87
CD	29.88	30.28	30.96	31.06	30.93	30.51	30.13	30.23
Shrinkage	16.4 nm	18.3 nm	19.4 nm	19.5 nm	19.8 nm	18.1 nm	17.9 nm	15.8 nm

Focus (um)

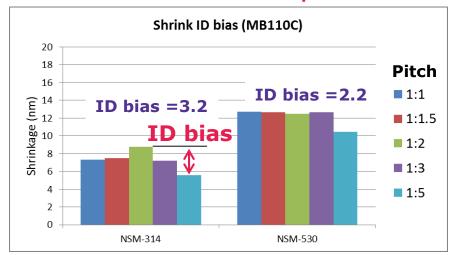
Focus vs CDU improvement

Local CD Uniformity is improved by >50%.

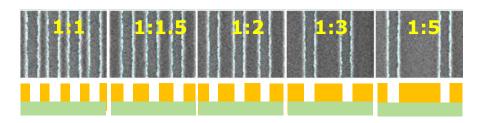
0

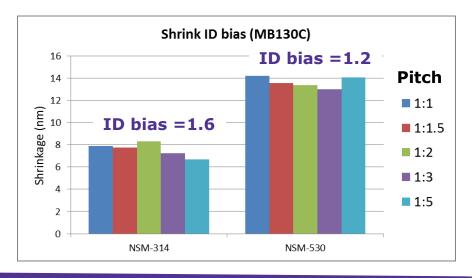
Proximity effects

Test Conditions


NTD resist

Shrink Materials: NSM-314, 530


Mixing Bake: 110, 130°C / 60sec


<u>Development</u>: DI-Water

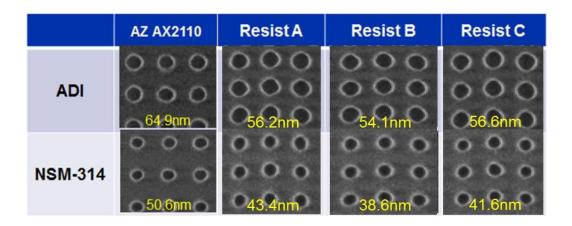
*ID bias = Isolated and dense pattern bias

Resist Pattern Pitch

Significantly higher shrinkage and lower iso-dense bias are achieved with NSM-530.

Resist compatibility

Test conditions

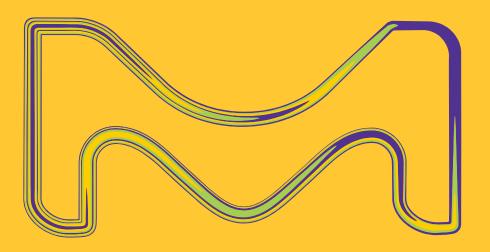

NTD resists from multiple suppliers

Shrink: 1st Gen shrink material and NSM-314

Mixing Bake: 150°C /60sec

Development: DIW

Good compatibility with various resists.


04 summary

summary

- EMD Performance Materials is specialized in **aqueous materials** to enhance photoresist performance.
- **Rinse process** has bee proven effective in mitigating pattern collapse, improving process margin, and depressing defectivity in multiple generations of lithography.
- Chemical shrink is a viable technology assisting pattern scaling with:
 - ✓ Cost-effective process enhancing resolution
 - ✓ Improvement of DOF & local CD uniformity with shrinkage tunable by process
 - ✓ Reduced proximity effects

