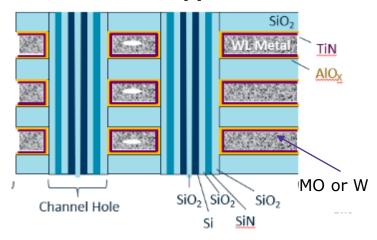
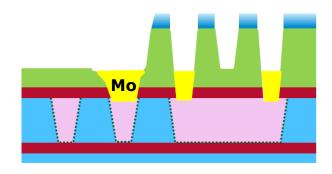

Area selective atomic layer deposition of molybdenum films on nanoscale metal and metal nitride patterns

Se-Won Lee¹, Moo-Sung Kim¹, Changwon Lee¹, Sergei Ivanov² Annelies Delabie^{3,} Marleen van der Veen³



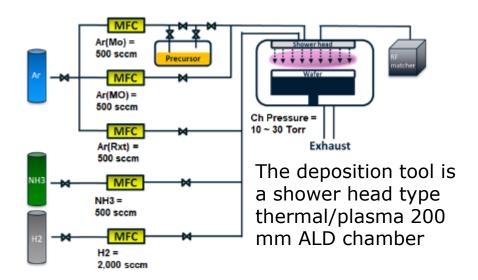
Introduction:


Needs for Selective Deposition of Molybdenum

- Molybdenum (Mo) is considered as an attractive material for future devices. Mo has almost same level of low bulk resistivity comparing to W, but it has smaller Electron Mean Free Path, so the effective resistivity is expected to be lower compared to W
- Several fluorine-free Mo precursors are available, such as MoO₂Cl₂ and MoCl₅
- Inherently selective deposition of Mo on metal nitride and metal films is highly attractive to reduce integration process steps in several applications

Selective Molybdenum on TiN for 3D NAND Application

Selective Molybdenum on Ru or Co for via fill in MOL/BEOL structures



Deposition of Mo and MoN Films from MoCl₅ and MoO₂Cl₂: **ALD Tool Configuration and Film Metrology**

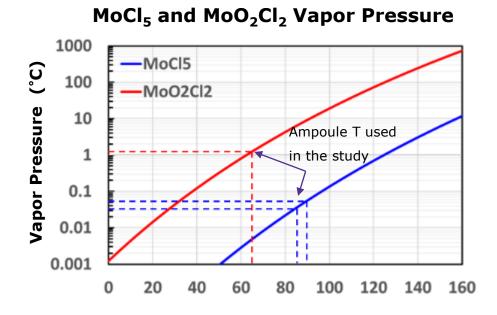
- Deposition of Mo and MoN on various substrates was investigated using two molybdenum chloride precursors: MoCl₅ and MoO₂Cl₂
- H₂ and NH₃ reactants were used for deposition of the Mo and MoN_x films

Tool Configuration

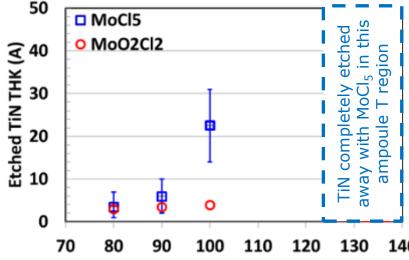
Film Metrology

Thickness and Resistance: XRF(TEM), 4PP

Impurities in the film: XPS and AES

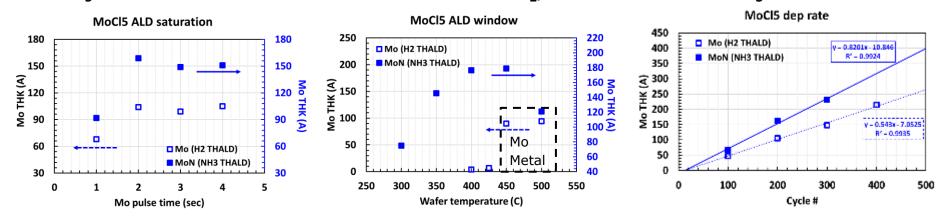

Crystallinity and Density: XRD / XRR

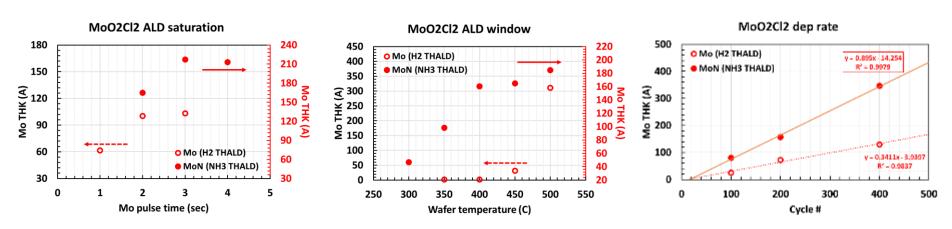
Surface morphology and conformality:
SEM & TEM



Deposition of Mo and MoN Films from MoCl₅ and MoO₂Cl₂: **Precursors Comparison**

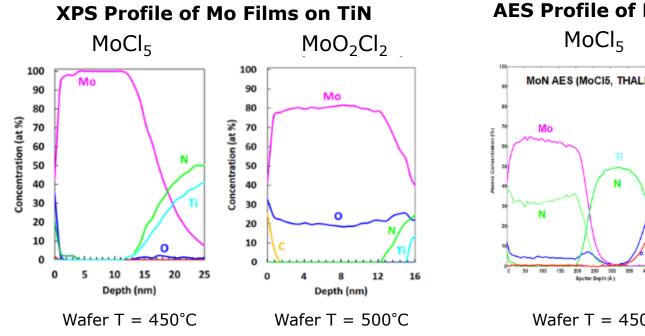
- MoO₂Cl₂ has significantly higher vapor pressure compared to MoCl₅
- MoCl₅ showed strong etch of TiN substrate. The etch rate increased with ampoule temperature due to higher precursor flux and longer pulse time
- 85-90°C ampoule temperature was selected for MoCl₅ process to reduce etch rate

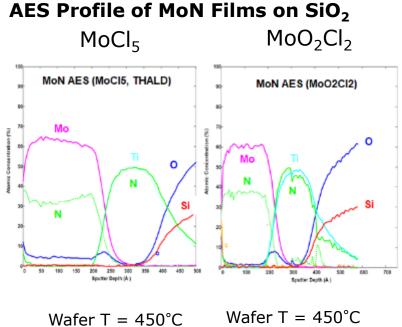

TiN Etch Thickness vs. Ampoule T



Deposition of Mo and MoN Films from MoCl₅ and MoO₂Cl₂: **Saturation and Growth per Cycle**

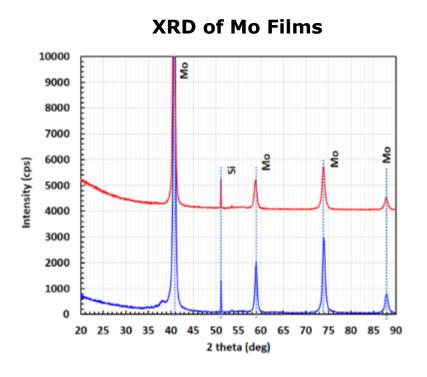
MoCl₅: saturation behavior but no THALD of Mo with H₂; THALD of MoN with NH₃ at 400-450°C

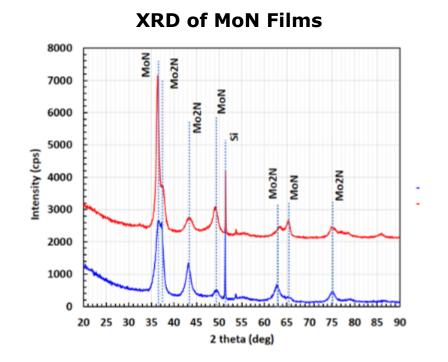

 MoO_2Cl_2 : no pure Mo with $H_2 < 500$ °C; THALD of MoN with NH_3 at 400-450°C



Deposition of Mo and MoN Films from MoCl₅ and MoO₂Cl₂: Film Characterization by XPS and Auger (AES)

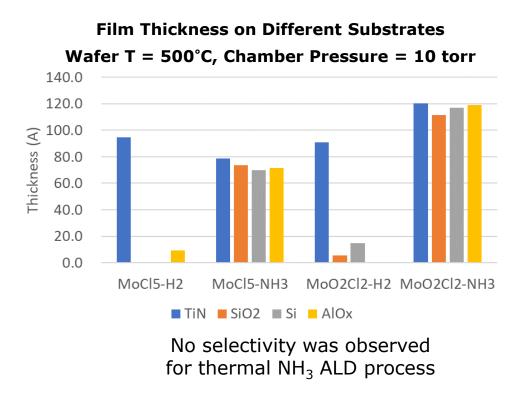
- Mo film deposited from MoO₂Cl₂ at 500°C contained up to 20 at % of oxygen
- MoCl₅ produced pure Mo films above 450°C wafer temperature
- Both precursors produced molybdenum-rich MoN films





Deposition of Mo and MoN Films from MoCl₅ and MoO₂Cl₂: **XRD of Mo and MoN Films**

- Crystalline Mo phase was observed in films deposited from Mo and MoO₂Cl₂, even though significant
 amount of residual oxygen was observed in film from MoO₂Cl₂
- A mixture of MoN and Mo₂N phases was observed in molybdenum nitride films, further reduction in nitrogen content was observed upon annealing of MoN films at higher temperature

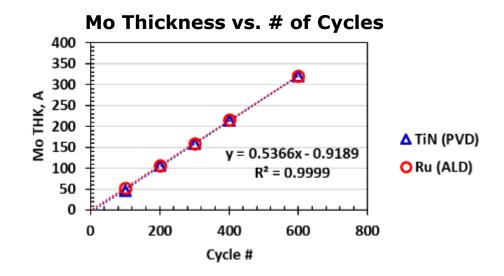


Selective Deposition of Mo Films:

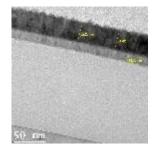
The Effect of Process Conditions on Selectivity

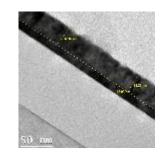
- MoCl₅/Thermal H₂ process showed very high inherent selectivity toward TiN surface. Some selectivity was also observed toward AlO_x relative to SiO_{2} . Selectivity had strong dependence on chamber P, wafer T and MoCl₅ flux
- Selectivity toward TiN was also observed for MoO₂Cl₂/H₂ process, but films contained residual oxygen

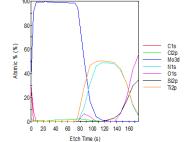
Mo Film Thickness on TiN and SiO₂ MoCl₅/H₂ THALD 350 on TiN sub 300 on SiO2 sub 불 200 150 450°C § 100 50 Chamber pressure (Torr) on TiN sub 140 Mo THK (A) 100 80 60 40 on SiO2 sub 8 500°C 20 Chamber pressure (Torr)

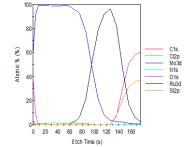


Selective Deposition of Mo Films:

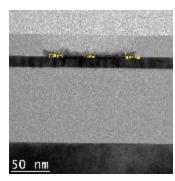

Tuning Process Selectivity Toward Ru and TiN


 Process conditions were optimized to demonstrate highly selective deposition of Mo films on Ru and TiN substrates

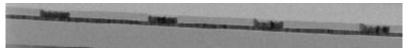



- Deposition conditions:
 - Wafer T = 450°C
 - Chamber P = 30 torr
 - H₂ Thermal ALD
 - Pulse sequence 2/20/5/20
 - # of Cycles = 100
 - GPC = 0.54A/cy on blanket wafer
- No deposition was observed on SiO₂ or LowK blanket wafers
- No detectable chloride on interface with Ru by XPS and SIMS

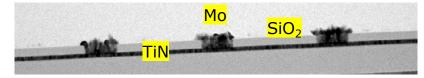
TEM of Mo Film on TiN TEM of Mo Film on Ru XPS of Mo Film on TiN XPS of Mo Film on Ru



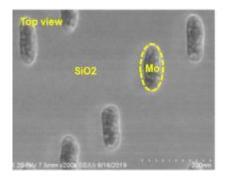
Selective Deposition of Mo Films: Selective Mo on TiN/SiO₂ Pattern



~ 6 nm Mo on TiN No dep on SiO₂

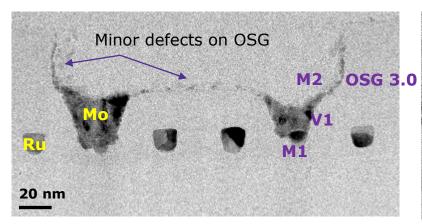


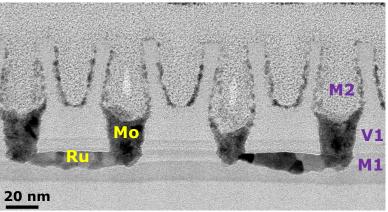
- 20 mi
- Mo SiO₂
 TiN


~ 20 nm Mo on TiN No dep on SiO₂

~50 nm Mo on TiN, Holes overfilled without deposition on SiO₂

- Bottom up fill of Mo on TiN surface by MoCl₅/H₂ thermal process
- Patterned wafer was provided by IMEC

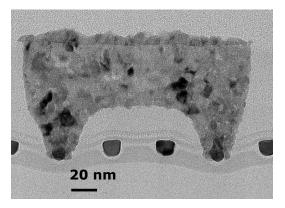




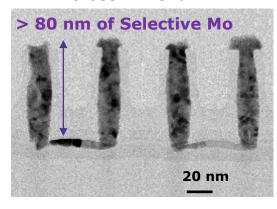
Selective Deposition of Mo Films: Selective Mo on Ru/SiO₂ Pattern – Partial Via Fill

- Mo films were deposited on Ru/LowK BEOL structures provided by IMEC
- The film was deposited using the recipe for 2.5 nm Mo film on blanket Ru
- Significant enhancement in deposition rate is observed on nano-structure

XTEM on Via Chain Structure After Mo Deposition on Ru M1 Layer (2.5 nm on blanket) Along M2 Chain Across M2 Chain

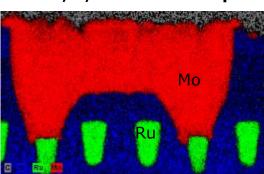


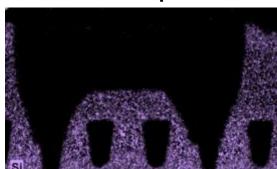
Selective Deposition of Mo Films:


Selective Mo on Ru/SiO₂ Pattern - Complete Via Fill

XTEM on Via Chain Structure After Mo Deposition on Ru M1 Layer (5.5 nm on blanket)

Along M2 Chain


Across M2 Chain


- 10 times growth enhancement inside narrow via
- No Ru and Mo intermixing

EDS Elemental Mapping Along M2 Chain

Si, C, Mo and Ru Map

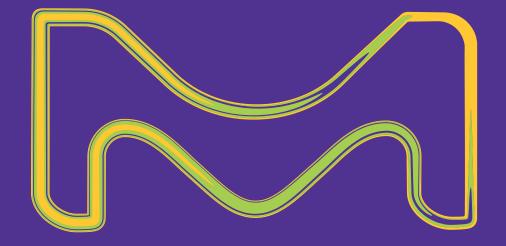
Si Map

O Map

Area Selective Molybdenum Films on Nanoscale Patterns: **Summary and Conclusions**

- Thermal ALD-like of Mo and MoN films with MoCl₅ and MoO₂Cl₂ was demonstrated using H₂ and NH₃ as reactant gases
- Classical ALD behavior was not observed with MoCl₅ due to its ability to self-etch deposited Mo film
- MoCl₅ showed significantly higher process selectivity toward TiN and Ru surfaces relative to SiO₂/OSG 3.0 surfaces
- High resolution TEM of Mo films on patterned TiN/SiO₂ and Ru/OSG 3.0 wafers showed a seamless bottom-up molybdenum fill on highly challenging structures with CD < 30 nm and feature height > 80 nm, with very minor defects on SiO₂ and LowK dielectric
- Over 10 times enhancement of effective deposition rate was observed inside the features compared to blanket film. The result may suggest that ASD mechanism on nanoscale is different from the macroscale mechanism.

Moo-Sung Kim¹ and Se-Won Lee¹


Merck Performance Materials 82 Jangjagol-ro, Danwon-gu Ansan City, 15601, S. Korea

Sergei Ivanov²

EMD Performance Materials 357 Marian Avenue Tamaqua, PA 18252, USA

Annelies Delabie³ and Marleen van der Veen³

IMEC B-3100 Leuven, Belgium

