Since 2019, we've awarded the Future Insight Prize for ambitious dream products in the fields of health, energy and nutrition. Attached to this annual prize is a grant of up to €1 million to support research into groundbreaking science and new technologies that would help make the dream product a reality.
This year, the Future Insight Prize has been awarded to Dr. Ting Lu of the University of Illinois Urbana-Champaign, and Dr. Stephen Techtmann of Michigan Technological University. Their Food Generator concept transforms inedible biomass – such as certain plants and the unpalatable parts of foodstuffs we already eat, also known as lignocellulosic waste – into safe and nutritious food within one day.
The Food Generator isn't a magic bullet designed to meet the needs of a growing population alone, nor can it promise delicious meals. Rather, it's intended as a supplementary or emergency solution to help address a crisis — in the wake of an extreme climate event, for instance. The Food Generator could be developed for personal use in homes, or scaled up to be an industrial process.
While the Food Generator may sound like an incredible feat, the concept is firmly rooted in science. It would be driven by intricate communities of microbes, such as bacteria and fungi, which work together to metabolize inedible material and waste, converting it into safe, palatable food.
There are many naturally occurring microbes that are capable of breaking down and feeding on things that we currently consider as waste. Dr. Techtmann is an expert in these recycling communities, while Dr. Lu's background is in engineering microbes by rewiring their metabolism.
Using the Future Insight Prize research grant, they will build on the work they're already doing to create combinations of natural and engineered microbes that can efficiently turn waste materials into food. While bacterial biomass is itself upwards of 50% protein and contains many essential nutrients [11], the researchers are developing microbial communities that can enrich this with additives such as amino acids, polyunsaturated fats and vitamins.
It may also be possible to create microbial communities that produce other substances with potential health benefits. Chemicals like gamma-aminobutyric acid, for example, naturally occur in the brain and have a calming effect, reducing feelings of stress, anxiety, and fear. The dream is a Food Generator that can be personalized to meet an individual’s unique needs and is flexible enough to convert all kinds of waste into food.
One type of waste the pair are targeting specifically is plastic pollution. We create 300 million tons of plastic waste each year, with between 8 and 13 million tons ending up in the oceans. Only 9% of all plastic society has ever produced has been recycled, with 79% dumped into landfills and the environment. Many plastics can take centuries to degrade, and that process creates micro-plastics that are often ingested by fish, invading the broader food chain to eventually be consumed by us as well [12,13,14].
Dr. Lu and Dr. Techtmann are working with bacteria that naturally break down plastics into protein. Their immediate goal is to further their work in communities that can process polyethylene terephthalate (PET) plastics, also known as polyester. The slow growth rates of these microbes have limited their use in the past, but Lu and Techtmann are engineering depolymerization enzymes to be more efficient, improving the ability of microbes to break down PET. In the future, they will expand that research to cover more plastics to tackle the issues of plastic pollution and feed a growing population in tandem.