Liquid Crystals: An Award-Winning Research Process

In the development of innovative liquid crystals, Merck KGaA, Darmstadt, Germany is building on the ideas of many. Important input is provided not only by the company’s own basic research, but also by customers.

THIS IS THE ONLY WAY THAT MAJOR PROGRESS CAN BE ACHIEVED

Anyone who regularly reads the advertisements for new smartphone models will discover big changes from one generation to the next. For example, the display of high-end smartphones in 2012 had a typical contrast ratio of 800:1. Two years later, they already had a contrast ratio of 1,400:1. This leap was supported by ultra-brightness fringe field switching (UB-FFS), a multiple award-winning liquid crystal technology from Merck KGaA, Darmstadt, Germany.    

Liquid crystals: the crucial difference

The contrast ratio is a value that expresses the maximum difference in brightness between black and white pixels. The higher this value is, the sharper and more vivid the image appears. However, there are factors that set physical limits to this value. 

One of these factors is a display’s resolution. To develop displays with increasingly higher resolutions, each individual dot or pixel in the display must become smaller and smaller. This reduces the intensity of light that can be transmitted by the liquid crystal layer, leading to lower brightness and therefore less brilliant displays.

15 percent more light

One solution could be to increase the power of the display backlight, but this would inevitably drain the battery too quickly. Power sources are especially overtaxed by videos displayed on smartphones at full brightness. Although such videos are displayed in brilliant colors, the viewing experience is relatively short-lived. 

This is where UB-FFS technology comes into play because it can substantially reduce the physical limits. UB-FFS mixes and switches liquid crystals so cleverly that around 15% more light can penetrate from the background lighting through the highest-resolution displays. As an added benefit, it also reduces energy consumption by up to 30%. UB-FFS technology is already being used in many smartphones and tablets. In 2014, Merck KGaA, Darmstadt, Germany received the Meyer-Galow prize for business chemistry for UB-FFS – followed by the German Innovation Award in 2015.    

Our basic research helps us to completely rethink matters.

mark verrall

Research & Development, Displays

Displays, Merck KGaA, Darmstadt, Germany

Targeted research in a global network

However, such quantum leaps do not occur by chance; they are the result of well-organized planning. “We have a long-term vision and a fast-paced research roadmap,” says Mark Verrall, who heads Research and Development (R&D) within Merck KGaA, Darmstadt, Germany’s Display Materials business unit. “In addition, we have based our R&D process on several pillars and networked it worldwide.”

Verrall himself is a fantastic example of how Merck KGaA, Darmstadt, Germany networks its employees. He has been working for the company for the past 25 years. After initially working in Chilworth, United Kingdom, he spent seven years in Taiwan and has been at headquarters in Darmstadt since early 2015. Verrall points out that employees can of course also go on short assignments abroad. “We also send our experts to work with our R&D teams around the world, often for three to six months at a time,” he says. “Although that’s not enough time to complete an entire project, it really helps to create networks and enable the participants to get to know other cultures.”    

Mark Verrall heads Research and Development (R&D) within Merck KGaA, Darmstadt, Germany’s Display Materials business unit. Mark Verrall heads Research and Development (R&D) within Merck KGaA, Darmstadt, Germany’s Display Materials business unit.

Mark Verrall heads Research and Development (R&D) within Merck KGaA, Darmstadt, Germany’s Display Materials business unit.

In addition to the employees’ expert knowledge, such networks are a key precondition for ensuring that the R&D process for liquid crystals remains productive. This process is based on four pillars: searching for new materials, technically integrating these materials into finished components, making customer-specific adaptations, and transferring tested prototypes to mass production. 

The R&D process also depends on innovative ideas, which come from a wide va

Important input is provided by the customers who manufacture liquid crystal displays (LCDs) in China, Japan, Korea, and Taiwan. Because the global production of LCDs is concentrated in these four countries, Merck KGaA, Darmstadt, Germany has set up its own facilities there. This allows local teams to quickly supply the customers’ varied needs. “Customers typically give us just ten days’ time to develop individualized new product samples,” says Verrall. Customers may have special requests regarding the color brilliance, for example, or the switching speed of the liquid crystals. To meet such requests, Merck KGaA, Darmstadt, Germany relies on its broad range of in-house developments and production capabilities. As a result, the company can deliver its own components for eight of the up to ten layers contained in a modern liquid crystal display

More demanding future-oriented projects are managed from Central Research in Darmstadt, where specialists conduct a more thorough search for solutions at the material and technical levels. Here, interdisciplinary teams of chemists, physicists, and engineers work hand in hand, adapting new chemical formulations to specific display technologies so that they can offer the client a choice of different possibilities. As was the case with the development of the UB-FFS technology, this process typically takes two to three years.    

Liquid crystals can even control windows

Merck KGaA, Darmstadt, Germany has also set itself a longer-term vision that looks beyond current technology to the future. Its researchers are pursuing groundbreaking projects that can take five to ten years to complete. “This basic research helps us to completely rethink matters and even create entirely new applications for our materials” says Verrall.

As part of its LC 2021 initiative, Merck KGaA, Darmstadt, Germany aims to make liquid crystals marketable for other applications besides displays. For example, liquid crystals are to regulate the transparency and heat transmittance of windows in building facades by quickly and efficiently switching the glass between bright and dark. Such technology has already been installed into a whole wall of windows at Merck KGaA, Darmstadt, Germany’s Innovation Center. Cooperation partners from the glass and window industries will help market this promising new technology in the future.    

Related Stories

View All Stories

Materials

Putting Mobility in the Fast Lane

Personal mobility has come a long way since someone had the bright idea to transform a piece of wood into a wheel. Join us on a quick trip down memory lane as we explore a high-tech future filled with smart ...

350

A welcome Ray of hope

An exciting complementary approach to cancer takes advantage of an ingenious natural defense: our own immune system.

Redirect

You have accessed https://www.emdgroup.com, but for users from your part of the world, we originally designed the following web presence https://www.merckgroup.com.

Let's go

Share Disclaimer

By sharing this content, you are consenting to share your data to this social media provider. More information are available in our Privacy Statement