Michael Miller
Publish Date
22 FEB 2022
Overview
PhD in Physical Chemistry, Intermolecular®, CDP002, CDP182
What kind of scientist are you at Intermolecular®, and what do you do? My areas of scientific expertise are in growth (including PVD, ALD, & CVD), characterization (including XRD, XRR, XPS, XRF), spectroscopic ellipsometry, Rs, e-test, DRAM capacitor device integration and computational analysis, including thermodynamics calculations of DG° for many reactions and lattice matching/crystalline templating.
What is your favorite part about being a scientist, and how did you get interested in science? Every problem we try to solve in research and development is like a new kind of puzzle. Each are uniquely difficult and require strategy and creativity to discover workable solutions, and I really enjoy solving puzzles. I was one of those odd kids that wanted to be a scientist from elementary school. I was very curious and wanted to understand the how and why of the way things work.
How does your work contribute to material innovation for the future of technology? I’ve developed a PVD process for growing a superconductor with close to its maximum Tc in HVM semiconductor equipment (that didn’t exist previously) for a customer that is now using it to manufacture quantum computers. I have also developed ALD deposition of 2D TMD layers, invented new RRAM stacks and multiple new DRAM device stacks to meet our customer’s KPIs.
Tell us about a current project you are working on and how this is an example of materials innovation? I recently presented at SEMICON West on a portion of the 2D materials project that I led. We scaled ALD 2D transition metal
dichalcogenide channel materials down to atomically thin monolayers and few layer stacks of these 2D layers, enabling semiconductor channel scaling down to atomic dimensions for both logic and memory.